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ABSTRACT

Wavelets are new mathematical objects which act as "designer trig functions." To
obtain a wavelet, the original function space of finite energy signals is generalized to a
phase-space, and the translation operator in the original space has a scale change in the
new variable adjoined to the translation. Localization properties in the phase-space can
be improved and unconditional bases are obtained for a broad class of function and distri-
bution spaces. Operators in phase space are "almost diagonal" instead of the traditional
condition of being diagonal in the original function space. These wavelets are applied to
the squeezed states of quantum optics. The scale change required for a quantum wavelet
is shown, with Prof. G.M. D'Ariano, to be a Yuen squeeze operator acting on an arbitrary
density operator.

1. INTRODUCTION

Wavelets were created in France less than a decade ago 1-5 when J. Morlet 1'4 gener-

alized the phase-space of Gabor 6 by adding a scale change to the frequency (wavenumber)

axis for applications to geophysical exploration. Grossmann 2'5 and Meyer 3'5'7 immediately
saw the importance of wavelets for mathematical physics and to deep questions in har-

monic analysis, respectively. There are a number of review articles 4'5'7-12 available today,
each specializing in different aspects of wavelets.

In terms of this paper, which applies wavelets to the squeezed states of quantum
optics, two long mathematics papers are the most important. The author is convinced
that they will also be the most important for physics, applied mathematics, engineering

and industrial problems. The two key papers are those of Daubechies 13, and Frazier and

Jawerth. 14 Daubeehies 13 first constructed a large family of orthonormal bases of compactly
supported wavelets in L2(R n). Frazier and Jawerth 14 gave a thorough, complete treatment
of sampled wavelets which is valid both in the classical function spaces and in the modern
distributional spaces.

The approach to squeezed states and quantum optics 15-22 will be through the coherent

states. 2a-25 The three main approaches to coherent states are those due to Klauder, 2a'2_-29

to Perelomov, 2s and to Onofrio. 29 The Klauder construction starts with an arbitrary rep-
resentation of a Lie group G on a complex separable Hilbert space 7-/and induces a repre-

sentation of G on itself with _ as a closed subspace of L:(R d, dt_) This yields a subrepre-

sentation of the regular representation in the sense of Mackey. 3° It works equally well with
states or frames. The approach of Perelomov starts with a "Little vector" and requires a
multiplier to add enough structure to force projective representation to be unitary. There
is additional subtlety in obtaining an invariant measure on the coset spaces used to reduce
G in that G/H1 can have a11 invariant measure d#l whereas G/H2 may not. Thus, the
choice of a "Little group" or "stability subgroup" is a sensitive issue in the Perelomov ap-
proach. The Onofrio construction yields a holomorphic representation of the Lie group. At
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least in simple casesit givesa complexificationof the real homogeneousspace M = G/H,
of Perelomov. For additional structure and the proofs see the nice new monograph of
Kaiser. 31

2. SQUEEZED STATES OF QUANTUM OPTICS

The coherent states for each complex number {_ are generated from the unique, trans-

lationally invariant Fock vacuum I 0 > using a unitary displacement operator D(c_) which

is defined below. Let a, a + be the Bose destruction and creation operator which satisfy
the canonical commutation relations

[a,a +] = 1 ,

[a,a] = [a+,a +1= 0
and define D as a Weyl-Heisenberg operator,

(1)

D(a): = exp(aa + - a'a) (2)

Then

Is >= D(_) I 0 > (3)

is the ordinary coherent state. In terms of an additional complex parameter _, the two-

photon squeezed states [ _, _ > of Stoler 15 and Yuen 16 can be generated using the squeezing
operator S(_)

S(_): = exp(_a +2 - _*a 2) (4)

through the action

I d,_ >= s(d) Io_>

= S((2)D(o_) I 0 > (5)

The states generated in Eq. (5) will be called amplitude squeezed states. These coherent
states satisfy the uncertainty principle but squeeze one side, say time or frequency,

exponentiallsi. Naively, it would seem that higher order squeezed operators S (k), k > 2,
can be defined through the definition

'S'(k)(() : = exp(C ark - C*ak) , (6)

but a neat paper by Fisher, Nieto and Sundberg 32 has shown the matrix element divergence

< 01 s{_)(¢) I0 >-_ oo , (7)

for all k > 2! This can be interpreted as either non-analyticity of the vacuum or as operator
domain problems. The task of defining k-photon squeezed wavelets will be relegated to
future works. Here a new quantum or operator-valued wavelet of D'Ariano and the

author 3z will be presented. Let A be an observable

.41a>=ala>

where the states I a > give a resolution of the identity

(8)

1 = / dtt(a) la >< a I , (9)
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where dp(a) is the invariant measure. The generating function of moments of the observ-

able A in a state whose density operator is/5 is given by

< _'"A >:= Tr[d"A_] (10)

The probability distribution function P(p, a) is defined as

P(/5, a) : --- Tr[I a >< a I P]

and is the Fourier transform of the generating function of moments with respect to the
measure dlz( a )

< e i'_A >= [ dp(a)eie_aP(_,a) (11)
3

A filtered Fourier transform with window function 7(a) for Eq. (11) can be defined natu-
rally as

<ei_A>.y : = / dp(O)ei'aT(a)P(fi, a ) (12)

A c-number wavelet transform analogous to Eq. (12) is given by

1/w(r_,_,_):- I_1 _/_ d_(°)x(_=S)P(Z"a) (13)

In the next section, additional discussions of wavelets will be given.

3. WAVELETS

For simplicity of exposition, let feL2(R 1) be a real or complex-valued finite energy

signal and denote its Fourier transform by ](k). In L 2, ] is guaranteed to exist and by

Parseval's theorem if[2 = 1,/12with proper normalization. Choose conventions s.t.

and

](k) = ff
OO

/(z) =/_ "°

(14)

(15)

If supp(f) C (-1/2, 1/2) and feL2([l ')

f(x) = _{ sin(rr(x

Inverting Eq. (16) yields

f(k)= {_f(r)e"irt}X¢_,l,.,i,,(r)

(16)

(17)
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where Xa is the characteristic function of the interval A C R 1. With discretization the

mn th coefficient of f (m, n integers) with "window function" g(x- nXo), which is one when
(x - nxo) is positive, is given by

FCm.(f) = e2'_i'_k°*°g(x - nzo)f(s)da (18)

Observe that the n-index is a spatial translation of units of x0 and the m-index is a wave-

number translation in units of k0. The joint appearance of (re,n) indicates that Cm_

lives in 2 d ® Z d, a phase-space. The scale change x --, x/2 _' plays an important role in

the Calderdn complex interpolation approach. A dilation is a translation in x (space)

with a scale change in Fourier transform variable k. Calderdn 35 published his famous
reproducing formula in 1964. The conditions required are the following: (i) Let g, and

be radial, smooth L2(R d) functions whose Fourier transforms _ and _5 in L2(R 2) with
support in a set A,

A := supp(_b,_) = {k l O < Cl <_l k l<_ C2 < oc} (19)

(ii) For each I k I# o

_(2_1k 1),_(2_I k l)-- 1
l,t_ --OC

Let feL2(R d) with ](0) = 0 and then

(20)

Let

](k) = y_f(k)_(2_lk I)VG(2_lkI)
V

_,_(k)= ](k)_(2 _ I k I)

which implies that rearrangement of Eq. (21) into

(21)

(22)

[_ 27ri2 v k
E c,/_)e (23)

has an obvious parallel to Eqs. (14-18). Define the quantities

_,,,_(x) : = 2-"/2_(2-"x- r)

¢v,,(x):=2-v/2¢(2-Vx-r)

_(x) : = 2-_/% (2Z;)

(24)

(25)

(2G)

and use these with Eq. (23) to obtain

Now

es(k) = Wk * f(s . 2k): =< f, wk,s > (27)
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:(')= Z)--:.< s,:,,,> :,,,(,),
k s

(28)

is a continuous wavelet expansion with wavelet coefficients given by the cs(k)'s of Eq. (27).
The mathematical importance of the wavelet expansion over the Fourier method, is that l't
generalizes to many function and distribution spaces where Fourier analysis is inapplicable.
The potential physical importance of wavelet methods is to make possible new formulations

and calculations of physical models. For computation or for experimental signal processing
the discrete wavelet transform of Frazier-Jawerth called the Q-transformation is required.
The Q-transform of f is

(f,:,¢) _ _--_ < S,:,,, > Ck,s
k s

(29)

and holds in general function and distribution spaces. The requirements on the L 2 function
which _p must satisfy are:

(i) :(x)dx =0 , (30)
O0

/:(iii) cr, s(_) = 2_r i_(k ) 12 dkoo _ < o_ (32)

The inverse problem of reconstructing f(x) from coefficients 1,2,a's'12 can then be reduced
to the matrix problem

(33)

Observe the correspondence of 2 _ with a scale change and r(r/s) with a spatial transla-
tion. A major improvement of wavelets over Fourier methods is apparent from Eq. (16).

Whereas, ](k) has great localization with compact support, f(z) has terrible localization
properties in x since as x ---, oo

sin(rx) 1
, (34)

The Frazier-Jawerth improvement in localization via the Q-transform is easily seen for

_b(k)eC_(R), where the integration by parts

/_ (Of)(k)e-2'_ik'_dk(2zix). f(z)= - oo O-k
(35)

can be repeated r-times to obtain

:(o.:)(2_ix)':(z) = (-1) r _ bT (k)e d_ (36)
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Hence,as x -_ oo

0 1 (37)

The size of c,-,s(f, _) depends largely on f in a neighborhood of the point (0, _-.) with a

spread (2 -r) and far from this point the coefficient decays as [ x ]-s. The simplest way to
obtain wavelets is to decompose the space of interest V1 into a closed subspace V0 and its
orthogonal complement W0 according to the direct sum

V1 =VoOWo , (38)

or schematically

Vl
/ \
v0 w0

In order to maintain simplicity let V1 denote either L 2 or g2. Let _ be a given function in
V1 which satisfies the relation

_(x) = _ h(_)2'/2_(2x - ,_) , (39)
n

where the set of coefficients {h(n) N},,=1 are a collection of constants, called "masking coef-

ficients" and the 21/2 factor in front of 9_ is for L 2 normalization. If 1/'1 is the closed, linear

span of all functions {21/2. _(2x - n)} ,

V1 = V, {2'/2_(2 • -n}

and V1 _ _72 and is a (useful) special case of Frazier-Jawerth.

Proposition: If the masking coefficients satisfy the condition

suplE[h(k-2n)[2}<_A
tt ,, k

N.

(4O)

(41)

for 0 < A < oo and AeR 1 then the space V0 of Eq. (39) is given by

v0 = v._(.- _)

with V0 "" g2 and V0 C V1.

Proof: Any f(x)eV1 can be expanded in 9_("- n)'s

(42)

Let

f(x) = __, c,_(x - n)
n

= 21/2 E E cnh(rn)_(2(x - n)- m)
n m

= 2 '12 _ _ c.h(m)_(2x - rr,- 2n)
_, m

(43)
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where

and take

k=rn+ 2n

f(x) = 2'/2_ bk_(2x- k)
k

n

_lb_ F =_ c.h(k-2.)
k k

< _. _ Ic. 121h(k- 2n)F
k n

The requirement in Eq. (42) suffices for

(44)

(45)

(46)

cn 12) , (47)

for every _eV1. In the event that {h(n)},_=le t_2, eq. (42) is automatically satisfied and V0
is a closed subspace of V1.

Question: Does a function _DeV0"l- exist s.t.

(i) Wo = V0_ = V¢(.- n) and

(ii) {¢(.- n)}_= 1 is an orthonormal basis.

Answer: Yes; Daubechies 13 in L _, by Frazier and Jawerth 14 in gz, Besov spaces, Sobolev
spaces, bounded mean oscillation (BMO) spaces and Triebel-Lizorkin spaces. Such a func-
tion ¢ is a wavelet and

{2"/2¢(2 ".-n):u,neZ} , (48)

is an orthonormal basis for L2(R). This reduces the problem to that of finding a finite set

of masking coefficients {h(n)}N=l. The easiest method for finding these coefficients is due
to Daubechies in Ref. (13). Assume that the set of non-zero masking coefficients is a finite

set and let qpeL 2 s.t.

#(0) = 1 (49)

Given the wavelet expansion

_(x) = _ h(_)2'/%(2x- _) ,
take its Fourier transform to obtain

_D(k) = _ h(n)e2"i"kl2_(kl2)12 '12

=: _(k/2)_(k/2) (50)
It is now necessary to show that

_D(k) : lira _fi rn(k/2J) • _D(k/2")}

= II m(k/2J) (51)
j=l
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Fig. 1
The second, fourth, sixth and seventh iteration of tile Box function for c2(x ).

makes sense ,in L 2 (or V1). This suggests a method of finite approximation providing the

masking coefficients are known. Let q0(x)eL2(V1) s.t.

and iterate

S_0(0) = qo(z)dx = 1 , (52)
oO

,,(x) = -
1"1

(53)

to generate T which is a wavelet, but is not the wavelet _/, of Eq. (25), but rather is that of
in Eq. (24) instead. In Daubechies nomenclature _ is called a father wavelet and if x is

identified as a "time" variable the dilations (= scale changes and translations) of v0 span I_;
which acts as the high frequency, k = w, content of the full space V1. The function _ can

be thought of as a "pixel shape" in V0 as pointed out by Kaiser. 31 Similarly, _/, is called the
mother wavelet and the dilations of _ span W0, which contains the low frequency content
of V1. In Figs. 1, and 2 a mother and father wavelet generated by the choice q0(x) = b(x),
the Box function

1, 1/2 < x < 1/2b(x)= O, otherwise
(54)
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Since _beW0 C V1 ,

_(k)= _(k/2)._(k) (55)

where {/z(n)}N=, is a set of masking coefficients for W0 and da(.)is a function analogous
to rn(.) in Eq. (47). Let r = 7r be a translation parameter and observe that finding _0 and
_/, is equivalent to finding two trigonometric polynomials s.t. the 2 × 2 matrix

(re(k) rh( k ) ) (56)u(k) = m(k + T) ,_(k + T)

is unitary. It is useful to consider rn(k) as a phase function which partitions by translations,

Im(k)l 2 + Im(k + r)l 2 = 1 (57)

To solve for Im(k)l 2 = P(I sin xf 2, I cosxl 2) treat P as the probability of a binomial process
with possible outcomes

Pl = Isin xl 2

p_ = Icosxl_ (58)
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Then re(k) is the square root of P. There are many solutions since P is an even, positive
polynomial but only one is needed. Then using m, it is straightforward to find rh. This
completes the discussion of simple wavelets.

For mathematical physics, operators and their expectations are the objects of interest.
The spectra of operators give infinite dimensional "diagonalizations" in terms of generalized
eigenfunctions. In a wavelet basis an operator is "almost diagonal" in a sense discussed
next.

Let T be an operator, f a function in a normed space which is in the dense domain
of T,

T: f _Tf

(59)
(Tf)(x) = [ g(x, y)f(y)@

J

s,t.

and

e

(i) II((x,y)l <_ ix _ Y----_I' (60a)

(ii) I OK(x'y)]Ox + OK(x,y) <Oy_Ix-cyl 2 (60b)

Let

f(x) = E cjkCjk(x) (61)
j,k

where the _)jk(X)'S are a wavelet basis. Then the kernel of T can be written as

j,k

(62)

where the ¢jk's satisfy the estimate

1

ICj_(x)t < 2-_-(1+ 12i-x - kl)-'-' (63)

In order to prove that K satisfies the conditions (i) and (ii) split the sum according to

E=E+E
j,k j<jo,k j>jo,k

(64)

with j0 chosen so that

2_° _<Iz -yl _ 2J°+_

Using the decomposition of Eq. (64), the estimate of Eq.
follows that

(65)

(163) and geometrical sums, it

The same techniques yield

C

IK(x, y)l _ ix - _,1 (66)
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and

OK(x,y)[' < c (67)
Ox I - Ix- yl 2 '

OK(x, y)
<-Ix -yl 2 (68)

There are several consequences of conditions (i), (ii) and Eq. (63). One is that such
operators map 5 p --+ L p for all 1 < p < oo, solving deep, old problems. Another is

that {_tgk} are an unconditional basis for L p, 1 < p < oc. The proofs work because of
phase-space localization; if two frequencies are well separated their wavelet coefficients
are small and if two times are well separated their wavelet coefficients are small. The
localization structure in Eq. (64) is the reason that the disadvantages of "ahnost diagonal"
are outweighed by tile advantages.

4. WAVELETS FOR SQUEEZED STATES

It is clear that in order to define a wavelet for the squeezed states of quantum optics,
it is necessary to define an operator which changes the scale. This has been accomplished
in Ref. (33) in a project with G.M. D'Ariano which was initiated at this workshop.

Let X(') be an analytic function of the observable ei. defined s.t.

and

x(_i)l- >=-Ia >

;g(,zi) : = [ dp(a)xla >< a I
a

(69)

(70)

This function satisfies the relation

< _((&) > = Tr[_(h)/5]

= / dp(a)x(a)P(fi, a) (71)

A dilation operator in the Heisenberg picture is defined on an observable e{ as

z)._(A) ._ A- ,7 (72)

The time picture is suppressed since no other picture will be used here although SchrSdinger

picture operators are give:: in Ref. (17). For some observables, ei,, the dilation operator

is unitary but D'Ariano 21'a4 has shown that there are important operators of quantum
optics that are completely positive maps, abbreviated CP, and are non-unitary. In the

unitary case, which is the only case discussed here, all products of operators are preserved
and

z),_(_i) = x{v,_(A)}

=X e
(73)
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Using Eq. (73), the operator-valued wavelet transform can now be written as

1
/2

lell/2
(74)

Thus, the dilation operator squeezes any state described by a density operator ,5. In Ref.

(34) two examples are presented:

(i) The unitary dilation of one quadrature of the electric field. This case is applicable to
a phase sensitive amplification.

(ii) The CP dilation map of the particle number which is applicable to improving noise
sensitivity in squeezed light signals.

and analogies of these have been obtained for a quantum wavelet in Ref. (33) with Prof.
G.M. D'Ariano.

5. CONCLUSIONS AND OUTLOOK

The scale change part of the wavelet dilation is accomplished by the Yuen 16 squeeze
operator. The application of wavelets to quantum optics is an idea with some potential.
For example, nonlinear modes and mode-coupling using wavelets should prove useful. The
quantum squeezed wavelet with D'Ariano should be a good candidate for highly dispersive
biological media. Future work will focus on these ideas.
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